Socialpost

Complete News World

James Webb Telescope: Discovering a gravitational monster in a young galaxy

James Webb Telescope: Discovering a gravitational monster in a young galaxy

Sciences James Webb Telescope

A gravitational monster discovered in a young galaxy

Bulletin - Astronomers at the Hubble Space Telescope, studying the Northern Hemisphere field of the Great Observatories Origins Deep Survey (GOODS), have measured the distance to the most distant galaxy ever.  The survey field contains tens of thousands of galaxies extending back in time.  Galaxy GN-z11, shown in the inset image, is seen as it was 13.4 billion years ago, just 400 million years after the Big Bang, when the universe was only three percent of its current age.  The galaxy is ablaze with bright, young blue stars, but they appear red in this image because their light has been stretched to longer spectral wavelengths due to the expansion of the universe.  Image: NASA/ESA dpa (Attention to editors: For editorial use only in connection with current reports and author designation: NASA/ESA/dpa - to dpa: "register: Bulletin - Astronomers at the Hubble Space Telescope, studying the Northern Hemisphere field of the Great Observatories Origins Deep Survey (GOODS), have measured the distance to the most distant galaxy ever.  The survey field contains tens of thousands of galaxies extending back in time.  Galaxy GN-z11, shown in the inset image, is seen as it was 13.4 billion years ago, just 400 million years after the Big Bang, when the universe was only three percent of its current age.  The galaxy is ablaze with young, bright blue stars, but they appear red in this image because their light has been stretched to longer spectral wavelengths due to the expansion of the universe.  Image: NASA/ESA dpa (Attention to editors: For editorial use only in connection with current reports and author designation: NASA/ESA/dpa - to dpa: "register:

Galaxy GN-z11, shown in the figure, dates back 13.4 billion years in the past

Source: Photo Alliance / German News Agency

A new discovery baffles researchers: A supermassive black hole has been discovered 13.4 billion light-years away, that is, only 400 million years after the Big Bang. How can the body grow so quickly?

BAs early as 400 million years after the Big Bang, 13.8 billion years ago, there was a black hole in a young galaxy with a mass 1.6 million times the mass of our Sun. This is shown through observations conducted by an international research team using the James Webb Space Telescope. How such large black holes form in such a short time remains a mystery, according to scientists led by Roberto Maiolino from the University of Cambridge in England, in the journal “nature“.

Black holes form when stars many times the mass of our Sun use up their nuclear energy reserves. In a supernova explosion, stars expel their gaseous atmosphere into space while their interior inexorably collapses. Eventually, the gravity of such stellar remnants becomes so strong that not even light can escape, hence the name black hole.

Black holes can gain mass over time by absorbing matter from their surroundings and by colliding and merging with the bodies of other stars. But to become supermassive, like the object now discovered in the distant galaxy GN-z11, such a black hole formed from a star would need, according to theoretical estimates, about a billion years.

Read also

mpia-closestbh_el-badry_2022_overview_d

But the light from the galaxy that researchers received with the space telescope took 13.4 billion years to reach Earth — so astronomers are seeing the galaxy and its black hole at a time when the universe was only 400 million years old. “It's too early to see such a supermassive black hole,” Maiolino says. “So we need to look for other ways in which such black holes can form and evolve.”

The galaxy GN-z11 caught the attention of astronomers because it shines so unusually. As measurements with the James Webb Space Telescope show, much of this light comes not from stars, but from a black hole at their center. More specifically: from gas that has accreted into an extremely hot disk rapidly orbiting the black hole. Gas eventually falls from this accretion disk into the black hole. The team determined its surprisingly large mass based on radiation from its surroundings.

Maiolino and his colleagues see two possibilities for its formation: Either it was created by a previously unknown process with a mass much greater than the collapse of a star. Or that, over the course of its evolution, it was at least temporarily able to absorb a much larger amount of gas than theoretical models predict. “Very small galaxies like GN-z11 are rich in gas, so they provide a lot of food for black holes,” Maiolino emphasizes.

Read also

Illustration on topic: Mineral Resource/Raw Material Development and Station Construction Sites on the Moon for WELT AM SONNTAG, ET Aug. 27, 2023, using photo: Moon - (File) - Astronaut Buzz Aldrin, Lunar Module Pilot, walks on the Moon's surface near Lunar Module Leg (LM) "eagle" During the Apollo 11 extravehicular activity (EVA) on Sunday, July 20, 1969. Astronaut Neil A.  Armstrong, Commander, photographed with the 70mm Lunar Surface Camera.  During the descent of astronauts Armstrong and Aldrin into the Lunar Module (LM) "eagle" To explore the Sea of ​​Tranquility area on the Moon, astronaut Michael Collins, command module pilot, remained with the Command and Service Modules (CSM). "Colombia" In lunar orbit.  +++(c) EPA - Report+++ [ Rechtehinweis: usage Germany only, Verwendung nur in Deutschland ]

In order to track the formation of supermassive black holes, astronomers must use their instruments to penetrate further into the early days of the universe — and there, so to speak, discover the “seeds” of these gravitational monsters. Maiolino and his colleagues see good chances for this: the sensitivity of the James Webb Space Telescope to weak radiation from distant galaxies is great enough to detect more black holes even at early times in cosmic evolution in the coming years.

You can listen to our WELT podcasts here

In order to view the embedded content, it is necessary to obtain your revocable consent to the transfer and processing of personal data, as the providers of the embedded content require this consent as third-party service providers. [In diesem Zusammenhang können auch Nutzungsprofile (u.a. auf Basis von Cookie-IDs) gebildet und angereichert werden, auch außerhalb des EWR]. By setting the switch to “On”, you agree to this (revocable at any time). This also includes your consent to the transfer of certain personal data to third countries, including the USA, in accordance with Article 49(1)(a) of the GDPR. You can find more information about this. You can revoke your consent at any time using the key and privacy at the bottom of the page.

“Aha!” “Ten Minutes of Everyday Knowledge” is WELT’s own knowledge podcast. Every Tuesday, Wednesday and Thursday we answer everyday questions from the field of science. Subscribe to the podcast on, among other places Spotify, Apple Podcast, Deezer, Amazon Music Or directly via RSS service.